PodcastsRank #42180
Artwork for FutureCraft GTM

FutureCraft GTM

MarketingPodcastsBusinessTechnologyENunited-states
5 / 5
FutureCraft GTM, the essential podcast for B2B marketers, sales and CS seeking to harness the power of AI. Hosted by industry experts Erin Mills and Ken Roden, each episode explores the dynamic intersection of artificial intelligence, go-to-market, strategy, and emerging trends in the B2B space.
Top 84.4% by pitch volume (Rank #42180 of 50,000)Data updated Feb 10, 2026

Key Facts

Publishes
N/A
Episodes
24
Founded
N/A
Category
Marketing
Number of listeners
Private
Hidden on public pages

Listen to this Podcast

Pitch this podcast
Get the guest pitch kit.
Book a quick demo to unlock the outreach details you actually need before you hit send.
  • Verified contact + outreach fields
  • Exact listener estimates (not just bands)
  • Reply rate + response timing signals
10 minutes. Friendly walkthrough. No pressure.
Book a demo
Public snapshot
Audience: N/A
Canonical: https://podpitch.com/podcasts/futurecraft-gtm
Reply rate: Under 2%

Latest Episodes

Back to top

Special Episode: Why Customer Success Can’t Be Automated (And What AI Can Actually Do)

Thu Dec 18 2025

Listen

Why Customer Success Can't Be Automated (And What AI Can Actually Do) In this special year-end episode of the FutureCraft GTM Podcast, hosts Ken Roden and Erin Mills sit down with Amanda Berger, Chief Customer Officer at Employ, to tackle the biggest question facing CS leaders in December 2026: What can AI actually do in customer success, and where do humans remain irreplaceable? Amanda brings 20+ years at the intersection of data and human decision-making—from AI-powered e-commerce personalization at Rich Relevance, to human-led security at HackerOne, to now implementing AI companions for recruiters. Her journey is a masterclass in understanding where the machine ends and the human begins. This conversation delivers hard truths about metrics, change management, and the future of CS roles—plus Amanda's controversial take that "if you don't use AI, AI will take your job." Unpacking the Human vs. Machine Balance in Customer Success Amanda returns with a reality check: AI doesn't understand business outcomes or motivation—humans do. She reveals how her career evolved from philosophy major studying "man versus machine" to implementing AI across radically different contexts (e-commerce, security, recruiting), giving her unique pattern recognition about what AI can genuinely do versus where it consistently fails. The Lagging Indicator Problem: Why NRR, churn, and NPS tell you what already happened (6 months ago) instead of what you can influence. Amanda makes the case for verified outcomes, leading indicators, and real-time CSAT at decision points. The 70% Rule for CS in Sales: Why most churn starts during implementation, not at renewal—and exactly when to bring CS into the deal to prevent it (technical win stage/vendor of choice). Segmentation ≠ Personalization: The jumpsuit story that proves AI is still just sophisticated bucketing, even with all the advances in 2026. True personalization requires understanding context, motivation, and individual goals. The Delegation Framework: Don't ask "what can AI do?" Ask "what parts of my job do I hate?" Delegate the tedious (formatting reports, repetitive emails, data analysis) so humans can focus on what makes them irreplaceable. Timestamps 00:00 - Introduction and AI Updates from Ken & Erin 01:28 - Welcoming Amanda Berger: From Philosophy to Customer Success 03:58 - The Man vs. Machine Question: Where AI Ends and Humans Begin 06:30 - The Jumpsuit Story: Why AI Personalization Is Still Segmentation 09:06 - Why NRR Is a Lagging Indicator (And What to Measure Instead) 12:20 - CSAT as the Most Underrated CS Metric 17:34 - The $4M Vulnerability: House Security Analogy for Attribution 21:15 - Bringing CS Into Sales at 70% Probability (The Non-Negotiable) 25:31 - Getting Customers to Actually Tell You Their Goals 28:21 - AI Companions at Employ: The Recruiting Reality Check 32:50 - The Delegation Mindset: What Parts of Your Job Do You Hate? 36:40 - Making the Case for Humans in an AI-First World 40:15 - The Framework: When to Use Digital vs. Human Touch 43:10 - The 8-Hour Workflow Reduced to 30 Minutes (Real ROI Examples) 45:30 - By 2027: The Hardest CX Role to Hire 47:49 - Lightning Round: Summarization, Implementation, Data Themes 51:09 - Wrap-Up and Key Takeaways Edited Transcript Introduction: Where Does the Machine End and Where Does the Human Begin? Erin Mills: Your career reads like a roadmap of enterprise AI evolution—from AI-powered e-commerce personalization at Rich Relevance, to human-powered collective intelligence at HackerOne, and now augmented recruiting at Employ. This doesn't feel random—it feels intentional. How has this journey shaped your philosophy on where AI belongs in customer experience? Amanda Berger: It goes back even further than that. I started my career in the late '90s in what was first called decision support, then business intelligence. All of this is really just data and how data helps humans make decisions. What's evolved through my career is how quickly we can access data and how spoon-fed those decisions are. Back then, you had to drill around looking for a needle in a haystack. Now, does that needle just pop out at you so you can make decisions based on it? I got bit by the data bug early on, realizing that information is abundant—and it becomes more abundant as the years go on. The way we access that information is the difference between making good business decisions and poor business decisions. In customer success, you realize it's really just about humans helping humans be successful. That convergence of "where's the data, where's the human" has been central to my career. The Jumpsuit Story: Why AI Personalization Is Still Just Segmentation Ken Roden: Back in 2019, you talked about being excited for AI to become truly personal—not segment-based. Flash forward to December 2026. How close are we to actual personalization? Amanda Berger: I don't think we're that close. I'll give you an example. A friend suggested I ask ChatGPT whether I should buy a jumpsuit. So I sent ChatGPT a picture and my measurements. I'm 5'2". ChatGPT's answer? "If you buy it, you should have it tailored." That's segmentation, not personalization. "You're short, so here's an answer for short people." Back in 2019, I was working on e-commerce personalization. If you searched for "black sweater" and I searched for "black sweater," we'd get different results—men's vs. women's. We called it personalization, but it was really segmentation. Fast forward to now. We have exponentially more data and better models, but we're still segmenting and calling it personalization. AI makes segmentation faster and more accessible, but it's still segmentation. Erin Mills: But did you get the jumpsuit? Amanda Berger: (laughs) No, I did not get the jumpsuit. But maybe I will. The Philosophy Degree That Predicted the Future Erin Mills: You started as a philosophy major taking "man versus machine" courses. What would your college self say? And did philosophy prepare you in ways a business degree wouldn't have? Amanda Berger: I actually love my philosophy degree because it really taught me to critically think about issues like this. I don't think I would have known back then that I was thinking about "where does the machine end and where does the human begin"—and that this was going to have so many applicable decision points throughout my career. What you're really learning in philosophy is logical thought process. If this happens, then this. And that's fundamentally the foundation for AI. "If you're short, you should get your outfit tailored." "If you have a customer with predictive churn indicators, you should contact that customer." It's enabling that logical thinking at scale. The Metrics That Actually Matter: Leading vs. Lagging Indicators Erin Mills: You've called NRR, churn rate, and NPS "lagging indicators." That's going to ruffle boardroom feathers. Make the case—what's broken, and what should we replace it with? Amanda Berger: By the time a customer churns or tells you they're gonna churn, it's too late. The best thing you can do is offer them a crazy discount. And when you're doing that, you've already kind of lost. What CS teams really need to be focused on is delivering value. If you deliver value—we all have so many competing things to do—if a SaaS tool is delivering value, you're probably not going to question it. If there's a question about value, then you start introducing lower price or competitors. And especially in enterprise, customers decide way, way before they tell you whether they're gonna pull the technology out. You usually miss the signs. So you've gotta look at leading indicators. What are the signs? And they're different everywhere I've gone. I've worked for companies where if there's a lot of engagement with support, that's a sign customers really care and are trying to make the technology work—it's a good sign, churn risk is low. Other companies I've worked at, when customers are heavily engaged with support, they're frustrated and it's not working—churn risk is high. You've got to do the work to figure out what those churn indicators are and how they factor into leading indicators: Are they achieving verified outcomes? Are they healthy? Are there early risk warnings? CSAT: The Most Underrated Metric Ken Roden: You're passionate about customer satisfaction as a score because it's granular and actionable. Can you share a time where CSAT drove a change and produced a measurable business result? Amanda Berger: I spent a lot of my career in security. And that's tough for attribution. In e-commerce, attribution is clear: Person saw recommendations, put them in cart, bought them. In hiring, their time-to-fill is faster—pretty clear. But in security, it's less clear. I love this example: We all live in houses, right? None of our houses got broken into last night. You don't go to work saying, "I had such a good night because my house didn't get broken into." You just expect that. And when your house didn't get broken into, you don't know what to attribute that to. Was it the locked doors? Alarm system? Dog? Safe neighborhood? That's true with security in general. You have to really think through attribution. Getting that feedback is really important. In surveys we've done, we've gotten actionable feedback. Somebody was able to detect a vulnerability, and we later realized it could have been tied to something that would have cost $4 million to settle. That's the kind of feedback you don't get without really digging around for it. And once you get that once, you're able to tie attribution to other things. Bringing CS Into the Sales Cycle: The 70% Rule Erin Mills: You're a religious believer in bringing CS into the sales cycle. When exactly do you insert CS, and how do you build trust without killing velocity? Amanda Berger: With bigger customers, I like to bring in somebody from CX whe

More

Why Customer Success Can't Be Automated (And What AI Can Actually Do) In this special year-end episode of the FutureCraft GTM Podcast, hosts Ken Roden and Erin Mills sit down with Amanda Berger, Chief Customer Officer at Employ, to tackle the biggest question facing CS leaders in December 2026: What can AI actually do in customer success, and where do humans remain irreplaceable? Amanda brings 20+ years at the intersection of data and human decision-making—from AI-powered e-commerce personalization at Rich Relevance, to human-led security at HackerOne, to now implementing AI companions for recruiters. Her journey is a masterclass in understanding where the machine ends and the human begins. This conversation delivers hard truths about metrics, change management, and the future of CS roles—plus Amanda's controversial take that "if you don't use AI, AI will take your job." Unpacking the Human vs. Machine Balance in Customer Success Amanda returns with a reality check: AI doesn't understand business outcomes or motivation—humans do. She reveals how her career evolved from philosophy major studying "man versus machine" to implementing AI across radically different contexts (e-commerce, security, recruiting), giving her unique pattern recognition about what AI can genuinely do versus where it consistently fails. The Lagging Indicator Problem: Why NRR, churn, and NPS tell you what already happened (6 months ago) instead of what you can influence. Amanda makes the case for verified outcomes, leading indicators, and real-time CSAT at decision points. The 70% Rule for CS in Sales: Why most churn starts during implementation, not at renewal—and exactly when to bring CS into the deal to prevent it (technical win stage/vendor of choice). Segmentation ≠ Personalization: The jumpsuit story that proves AI is still just sophisticated bucketing, even with all the advances in 2026. True personalization requires understanding context, motivation, and individual goals. The Delegation Framework: Don't ask "what can AI do?" Ask "what parts of my job do I hate?" Delegate the tedious (formatting reports, repetitive emails, data analysis) so humans can focus on what makes them irreplaceable. Timestamps 00:00 - Introduction and AI Updates from Ken & Erin 01:28 - Welcoming Amanda Berger: From Philosophy to Customer Success 03:58 - The Man vs. Machine Question: Where AI Ends and Humans Begin 06:30 - The Jumpsuit Story: Why AI Personalization Is Still Segmentation 09:06 - Why NRR Is a Lagging Indicator (And What to Measure Instead) 12:20 - CSAT as the Most Underrated CS Metric 17:34 - The $4M Vulnerability: House Security Analogy for Attribution 21:15 - Bringing CS Into Sales at 70% Probability (The Non-Negotiable) 25:31 - Getting Customers to Actually Tell You Their Goals 28:21 - AI Companions at Employ: The Recruiting Reality Check 32:50 - The Delegation Mindset: What Parts of Your Job Do You Hate? 36:40 - Making the Case for Humans in an AI-First World 40:15 - The Framework: When to Use Digital vs. Human Touch 43:10 - The 8-Hour Workflow Reduced to 30 Minutes (Real ROI Examples) 45:30 - By 2027: The Hardest CX Role to Hire 47:49 - Lightning Round: Summarization, Implementation, Data Themes 51:09 - Wrap-Up and Key Takeaways Edited Transcript Introduction: Where Does the Machine End and Where Does the Human Begin? Erin Mills: Your career reads like a roadmap of enterprise AI evolution—from AI-powered e-commerce personalization at Rich Relevance, to human-powered collective intelligence at HackerOne, and now augmented recruiting at Employ. This doesn't feel random—it feels intentional. How has this journey shaped your philosophy on where AI belongs in customer experience? Amanda Berger: It goes back even further than that. I started my career in the late '90s in what was first called decision support, then business intelligence. All of this is really just data and how data helps humans make decisions. What's evolved through my career is how quickly we can access data and how spoon-fed those decisions are. Back then, you had to drill around looking for a needle in a haystack. Now, does that needle just pop out at you so you can make decisions based on it? I got bit by the data bug early on, realizing that information is abundant—and it becomes more abundant as the years go on. The way we access that information is the difference between making good business decisions and poor business decisions. In customer success, you realize it's really just about humans helping humans be successful. That convergence of "where's the data, where's the human" has been central to my career. The Jumpsuit Story: Why AI Personalization Is Still Just Segmentation Ken Roden: Back in 2019, you talked about being excited for AI to become truly personal—not segment-based. Flash forward to December 2026. How close are we to actual personalization? Amanda Berger: I don't think we're that close. I'll give you an example. A friend suggested I ask ChatGPT whether I should buy a jumpsuit. So I sent ChatGPT a picture and my measurements. I'm 5'2". ChatGPT's answer? "If you buy it, you should have it tailored." That's segmentation, not personalization. "You're short, so here's an answer for short people." Back in 2019, I was working on e-commerce personalization. If you searched for "black sweater" and I searched for "black sweater," we'd get different results—men's vs. women's. We called it personalization, but it was really segmentation. Fast forward to now. We have exponentially more data and better models, but we're still segmenting and calling it personalization. AI makes segmentation faster and more accessible, but it's still segmentation. Erin Mills: But did you get the jumpsuit? Amanda Berger: (laughs) No, I did not get the jumpsuit. But maybe I will. The Philosophy Degree That Predicted the Future Erin Mills: You started as a philosophy major taking "man versus machine" courses. What would your college self say? And did philosophy prepare you in ways a business degree wouldn't have? Amanda Berger: I actually love my philosophy degree because it really taught me to critically think about issues like this. I don't think I would have known back then that I was thinking about "where does the machine end and where does the human begin"—and that this was going to have so many applicable decision points throughout my career. What you're really learning in philosophy is logical thought process. If this happens, then this. And that's fundamentally the foundation for AI. "If you're short, you should get your outfit tailored." "If you have a customer with predictive churn indicators, you should contact that customer." It's enabling that logical thinking at scale. The Metrics That Actually Matter: Leading vs. Lagging Indicators Erin Mills: You've called NRR, churn rate, and NPS "lagging indicators." That's going to ruffle boardroom feathers. Make the case—what's broken, and what should we replace it with? Amanda Berger: By the time a customer churns or tells you they're gonna churn, it's too late. The best thing you can do is offer them a crazy discount. And when you're doing that, you've already kind of lost. What CS teams really need to be focused on is delivering value. If you deliver value—we all have so many competing things to do—if a SaaS tool is delivering value, you're probably not going to question it. If there's a question about value, then you start introducing lower price or competitors. And especially in enterprise, customers decide way, way before they tell you whether they're gonna pull the technology out. You usually miss the signs. So you've gotta look at leading indicators. What are the signs? And they're different everywhere I've gone. I've worked for companies where if there's a lot of engagement with support, that's a sign customers really care and are trying to make the technology work—it's a good sign, churn risk is low. Other companies I've worked at, when customers are heavily engaged with support, they're frustrated and it's not working—churn risk is high. You've got to do the work to figure out what those churn indicators are and how they factor into leading indicators: Are they achieving verified outcomes? Are they healthy? Are there early risk warnings? CSAT: The Most Underrated Metric Ken Roden: You're passionate about customer satisfaction as a score because it's granular and actionable. Can you share a time where CSAT drove a change and produced a measurable business result? Amanda Berger: I spent a lot of my career in security. And that's tough for attribution. In e-commerce, attribution is clear: Person saw recommendations, put them in cart, bought them. In hiring, their time-to-fill is faster—pretty clear. But in security, it's less clear. I love this example: We all live in houses, right? None of our houses got broken into last night. You don't go to work saying, "I had such a good night because my house didn't get broken into." You just expect that. And when your house didn't get broken into, you don't know what to attribute that to. Was it the locked doors? Alarm system? Dog? Safe neighborhood? That's true with security in general. You have to really think through attribution. Getting that feedback is really important. In surveys we've done, we've gotten actionable feedback. Somebody was able to detect a vulnerability, and we later realized it could have been tied to something that would have cost $4 million to settle. That's the kind of feedback you don't get without really digging around for it. And once you get that once, you're able to tie attribution to other things. Bringing CS Into the Sales Cycle: The 70% Rule Erin Mills: You're a religious believer in bringing CS into the sales cycle. When exactly do you insert CS, and how do you build trust without killing velocity? Amanda Berger: With bigger customers, I like to bring in somebody from CX whe

Key Metrics

Back to top
Pitches sent
7
From PodPitch users
Rank
#42180
Top 84.4% by pitch volume (Rank #42180 of 50,000)
Average rating
5.0
Ratings count may be unavailable
Reviews
2
Written reviews (when available)
Publish cadence
N/A
Episode count
24
Data updated
Feb 10, 2026
Social followers
36

Public Snapshot

Back to top
Country
United States
Language
English
Language (ISO)
Release cadence
N/A
Latest episode date
Thu Dec 18 2025

Audience & Outreach (Public)

Back to top
Audience range
Private
Hidden on public pages
Reply rate band
Under 2%
Public band
Response time band
1–2 days
Public band
Replies received
1–5
Public band

Public ranges are rounded for privacy. Unlock the full report for exact values.

Presence & Signals

Back to top
Social followers
36
Contact available
Yes
Masked on public pages
Sponsors detected
Private
Hidden on public pages
Guest format
Private
Hidden on public pages

Social links

No public profiles listed.

Demo to Unlock Full Outreach Intelligence

We publicly share enough context for discovery. For actionable outreach data, unlock the private blocks below.

Audience & Growth
Demo to unlock
Monthly listeners49,360
Reply rate18.2%
Avg response4.1 days
See audience size and growth. Demo to unlock.
Contact preview
e***@hidden
Get verified host contact details. Demo to unlock.
Sponsor signals
Demo to unlock
Sponsor mentionsLikely
Ad-read historyAvailable
View sponsorship signals and ad read history. Demo to unlock.
Book a demo

How To Pitch FutureCraft GTM

Back to top

Want to get booked on podcasts like this?

Become the guest your future customers already trust.

PodPitch helps you find shows, draft personalized pitches, and hit send faster. We share enough public context for discovery; for actionable outreach data, unlock the private blocks.

  • Identify shows that match your audience and offer.
  • Write pitches in your voice (nothing sends without you).
  • Move from “maybe later” to booked interviews faster.
  • Unlock deeper outreach intelligence with a quick demo.

This show is Rank #42180 by pitch volume, with 7 pitches sent by PodPitch users.

Book a demoBrowse more shows10 minutes. Friendly walkthrough. No pressure.
5 / 5
RatingsN/A
Written reviews2

We summarize public review counts here; full review text aggregation is not shown on PodPitch yet.

Frequently Asked Questions About FutureCraft GTM

Back to top

What is FutureCraft GTM about?

FutureCraft GTM, the essential podcast for B2B marketers, sales and CS seeking to harness the power of AI. Hosted by industry experts Erin Mills and Ken Roden, each episode explores the dynamic intersection of artificial intelligence, go-to-market, strategy, and emerging trends in the B2B space.

How often does FutureCraft GTM publish new episodes?

FutureCraft GTM publishes on a variable schedule.

How many listeners does FutureCraft GTM get?

PodPitch shows a public audience band (like "N/A"). Book a demo to unlock exact audience estimates and how we calculate them.

How can I pitch FutureCraft GTM?

Use PodPitch to access verified outreach details and pitch recommendations for FutureCraft GTM. Start at https://podpitch.com/try/1.

Which podcasts are similar to FutureCraft GTM?

This page includes internal links to similar podcasts. You can also browse the full directory at https://podpitch.com/podcasts.

How do I contact FutureCraft GTM?

Public pages only show a masked contact preview. Book a demo to unlock verified email and outreach fields.

Quick favor for your future self: want podcast bookings without the extra mental load? PodPitch helps you find shows, draft personalized pitches, and hit send faster.