PodcastsRank #19416
Artwork for The MapScaping Podcast - GIS, Geospatial, Remote Sensing, earth observation and digital geography

The MapScaping Podcast - GIS, Geospatial, Remote Sensing, earth observation and digital geography

Earth SciencesPodcastsScienceNatural SciencesENunited-statesDaily or near-daily
4.7 / 5
A podcast for geospatial people. Weekly episodes that focus on the tech, trends, tools, and stories from the geospatial world. Interviews with the people that are shaping the future of GIS, geospatial as well as practitioners working in the geo industry. This is a podcast for the GIS and geospatial community subscribe or visit https://mapscaping.com to learn more
Top 38.8% by pitch volume (Rank #19416 of 50,000)Data updated Feb 10, 2026

Key Facts

Publishes
Daily or near-daily
Episodes
248
Founded
N/A
Category
Earth Sciences
Number of listeners
Private
Hidden on public pages

Listen to this Podcast

Pitch this podcast
Get the guest pitch kit.
Book a quick demo to unlock the outreach details you actually need before you hit send.
  • Verified contact + outreach fields
  • Exact listener estimates (not just bands)
  • Reply rate + response timing signals
10 minutes. Friendly walkthrough. No pressure.
Book a demo
Public snapshot
Audience: 8K–20K / month
Canonical: https://podpitch.com/podcasts/the-mapscaping-podcast-gis-geospatial-remote-sensing-earth-observation-and-digital-geograp
Cadence: Active weekly
Reply rate: Under 2%

Latest Episodes

Back to top

Vibe Coding and the Fragmentation of Open Source

Tue Feb 03 2026

Listen

Why Machine-Writing Code is the Best (and Most Dangerous) Thing for Geospatial:   The current discourse surrounding AI coding is nothing if not polarized. On one side, the technofuturists urge us to throw away our keyboards; on the other, skeptics dismiss Large Language Models (LLMs) as little more than "fancy autocomplete" that will never replace a "real" engineer. Both sides miss the nuanced reality of the shift we are living through right now.   I recently sat down with Matt Hansen, Director of Geospatial Ecosystems at Element 84, to discuss this transition. With a 30-year career spanning the death of photographic film to the birth of Cloud-Native Geospatial, Hansen has a unique vantage point on how technology shifts redefine our roles. He isn’t predicting a distant future; he is describing a present where the barrier between an idea and a functioning tool has effectively collapsed.   The "D" Student Who Built the Future Hansen’s journey into the heart of open-source leadership began with what he initially thought was a terminal failure. As a freshman at the Rochester Institute of Technology, he found himself in a C programming class populated almost entirely by seasoned professionals from Kodak. Intimidated and overwhelmed by the "syntax wall," he withdrew from the class the first time and scraped by with a "D" on his second attempt. For years, he believed software simply wasn't his path. Today, however, he is a primary architect of the SpatioTemporal Asset Catalog (STAC) ecosystem and a major open-source contributor. This trajectory is the perfect case study for the democratizing power of AI: it allows the subject matter expert—the person who understands "photographic technology" or "imaging science"—to bypass the mechanical hurdles of brackets and semi-colons. "I took your class twice and thought I was never software... and now here I am like a regular contributor to open source software for geospatial." — Matt Hansen to his former professor.   The Rise of "Vibe Coding" and the Fragmentation Trap   We are entering the era of "vibe coding," where developers prompt AI based on a general description or "vibe" of what they need. While this is exhilarating for the individual, it creates a systemic risk of "bespoke implementations." When a user asks an AI for a solution without a deep architectural understanding, the machine often generates a narrow, unvetted fragment of code rather than utilizing a secure, scalable library. The danger here is a catastrophic loss of signal. If thousands of users release these AI-generated fragments onto platforms like GitHub, we risk drowning out the vetted, high-quality solutions that the community has spent decades building. We are creating a "sea of noise" that could make it harder for both humans and future AI models to identify the standard, proper way to solve a problem.   Why Geospatial is Still "Special" (The Anti-meridian Test)   For a long time, the industry mantra has been "geospatial isn’t special," pushing for spatial data to be treated as just another data type, like in GeoParquet. However, Hansen argues that AI actually proves that domain expertise is more critical than ever. Without specific guidance, AI often fails to account for the unique edge cases of a spherical world. Consider the "anti-meridian" problem: polygons crossing the 180th meridian. When asked to handle spatial data, an AI will often "brute force" a custom logic that works for a small, localized dataset but fails the moment it encounters the wrap-around logic of a global scale. A domain expert knows to direct the AI toward Pete Kadomsky’s "anti-meridian" library. AI is not a subject matter expert; it is a powerful engine that requires an expert navigator to avoid the "Valley of Despair."   Documentation is Now SEO for the Machines   We are seeing a counterintuitive shift in how we value documentation. Traditionally, README files and tutorials were written by humans, for humans. In the age of AI, documentation has become the primary way we "market" our code to the machines. If your open-source project lacks a clean README or a rigorous specification, it is effectively invisible to the AI-driven future of development. By investing in high-quality documentation, developers are engaging in a form of technical SEO. You are ensuring that when an AI looks for the "signal" in the noise, it chooses your vetted library because it is the most readable and reliable option available.   From Software Developers to Software Designers   The role of the geospatial professional is shifting from writing syntax to what Hansen calls the "Foundry" model. Using tools like GitHub Specit, the human acts as a designer, defining rigorous blueprints, constraints, and requirements in human language. The machine then executes the "how," while the human remains the sole arbiter of the "what" and "why." Hansen’s advice for the next generation—particularly those entering a job market currently hostile to junior engineers—is to abandon generalism. Don't just learn to code; become a specialist in a domain like geospatial. The ability to write Python is becoming a commodity, but the ability to design a system that accounts for the nuances of remote sensing is an increasingly rare and valuable asset.   History Repeats: The "Priesthood" of Assembly   This shift mirrors the 1950s, when the "priesthood" of assembly programmers looked at the first compilers with deep suspicion. Kathleen Booth, who wrote the first assembly language, lived in a world where manual coding was an arcane, elite skill. Those early programmers argued that compilers were untrustworthy and that a human could always write "better" code by hand. They were technically right about efficiency, but they were wrong about the future. Just as the compiler was "good enough" to allow us to move "up the stack" and take on more complex problems, AI is the next level of abstraction. We might use a "Ralph Wiggum script"—a loop that feeds AI output back into itself until the task is "done"—and while it may be a brute-force method, it is often more productive than the perfection of the past.   Conclusion: The Future is a Specialist's Game   We are moving away from being the writers of code and toward being the designers of systems. While the "syntax wall" has been demolished, the requirement for domain knowledge has only grown higher. The keyboard isn't dying; it is being repurposed for higher-level architectural thought.   As the industry experiences a "recursive improvement" of these tools, the question for every professional is no longer about whether the machine can do your job. It’s whether you have the specialized expertise to tell the machine what a "good enough" job actually looks like. Are you prepared to stop being a coder and start being a designer?

More

Why Machine-Writing Code is the Best (and Most Dangerous) Thing for Geospatial:   The current discourse surrounding AI coding is nothing if not polarized. On one side, the technofuturists urge us to throw away our keyboards; on the other, skeptics dismiss Large Language Models (LLMs) as little more than "fancy autocomplete" that will never replace a "real" engineer. Both sides miss the nuanced reality of the shift we are living through right now.   I recently sat down with Matt Hansen, Director of Geospatial Ecosystems at Element 84, to discuss this transition. With a 30-year career spanning the death of photographic film to the birth of Cloud-Native Geospatial, Hansen has a unique vantage point on how technology shifts redefine our roles. He isn’t predicting a distant future; he is describing a present where the barrier between an idea and a functioning tool has effectively collapsed.   The "D" Student Who Built the Future Hansen’s journey into the heart of open-source leadership began with what he initially thought was a terminal failure. As a freshman at the Rochester Institute of Technology, he found himself in a C programming class populated almost entirely by seasoned professionals from Kodak. Intimidated and overwhelmed by the "syntax wall," he withdrew from the class the first time and scraped by with a "D" on his second attempt. For years, he believed software simply wasn't his path. Today, however, he is a primary architect of the SpatioTemporal Asset Catalog (STAC) ecosystem and a major open-source contributor. This trajectory is the perfect case study for the democratizing power of AI: it allows the subject matter expert—the person who understands "photographic technology" or "imaging science"—to bypass the mechanical hurdles of brackets and semi-colons. "I took your class twice and thought I was never software... and now here I am like a regular contributor to open source software for geospatial." — Matt Hansen to his former professor.   The Rise of "Vibe Coding" and the Fragmentation Trap   We are entering the era of "vibe coding," where developers prompt AI based on a general description or "vibe" of what they need. While this is exhilarating for the individual, it creates a systemic risk of "bespoke implementations." When a user asks an AI for a solution without a deep architectural understanding, the machine often generates a narrow, unvetted fragment of code rather than utilizing a secure, scalable library. The danger here is a catastrophic loss of signal. If thousands of users release these AI-generated fragments onto platforms like GitHub, we risk drowning out the vetted, high-quality solutions that the community has spent decades building. We are creating a "sea of noise" that could make it harder for both humans and future AI models to identify the standard, proper way to solve a problem.   Why Geospatial is Still "Special" (The Anti-meridian Test)   For a long time, the industry mantra has been "geospatial isn’t special," pushing for spatial data to be treated as just another data type, like in GeoParquet. However, Hansen argues that AI actually proves that domain expertise is more critical than ever. Without specific guidance, AI often fails to account for the unique edge cases of a spherical world. Consider the "anti-meridian" problem: polygons crossing the 180th meridian. When asked to handle spatial data, an AI will often "brute force" a custom logic that works for a small, localized dataset but fails the moment it encounters the wrap-around logic of a global scale. A domain expert knows to direct the AI toward Pete Kadomsky’s "anti-meridian" library. AI is not a subject matter expert; it is a powerful engine that requires an expert navigator to avoid the "Valley of Despair."   Documentation is Now SEO for the Machines   We are seeing a counterintuitive shift in how we value documentation. Traditionally, README files and tutorials were written by humans, for humans. In the age of AI, documentation has become the primary way we "market" our code to the machines. If your open-source project lacks a clean README or a rigorous specification, it is effectively invisible to the AI-driven future of development. By investing in high-quality documentation, developers are engaging in a form of technical SEO. You are ensuring that when an AI looks for the "signal" in the noise, it chooses your vetted library because it is the most readable and reliable option available.   From Software Developers to Software Designers   The role of the geospatial professional is shifting from writing syntax to what Hansen calls the "Foundry" model. Using tools like GitHub Specit, the human acts as a designer, defining rigorous blueprints, constraints, and requirements in human language. The machine then executes the "how," while the human remains the sole arbiter of the "what" and "why." Hansen’s advice for the next generation—particularly those entering a job market currently hostile to junior engineers—is to abandon generalism. Don't just learn to code; become a specialist in a domain like geospatial. The ability to write Python is becoming a commodity, but the ability to design a system that accounts for the nuances of remote sensing is an increasingly rare and valuable asset.   History Repeats: The "Priesthood" of Assembly   This shift mirrors the 1950s, when the "priesthood" of assembly programmers looked at the first compilers with deep suspicion. Kathleen Booth, who wrote the first assembly language, lived in a world where manual coding was an arcane, elite skill. Those early programmers argued that compilers were untrustworthy and that a human could always write "better" code by hand. They were technically right about efficiency, but they were wrong about the future. Just as the compiler was "good enough" to allow us to move "up the stack" and take on more complex problems, AI is the next level of abstraction. We might use a "Ralph Wiggum script"—a loop that feeds AI output back into itself until the task is "done"—and while it may be a brute-force method, it is often more productive than the perfection of the past.   Conclusion: The Future is a Specialist's Game   We are moving away from being the writers of code and toward being the designers of systems. While the "syntax wall" has been demolished, the requirement for domain knowledge has only grown higher. The keyboard isn't dying; it is being repurposed for higher-level architectural thought.   As the industry experiences a "recursive improvement" of these tools, the question for every professional is no longer about whether the machine can do your job. It’s whether you have the specialized expertise to tell the machine what a "good enough" job actually looks like. Are you prepared to stop being a coder and start being a designer?

Key Metrics

Back to top
Pitches sent
17
From PodPitch users
Rank
#19416
Top 38.8% by pitch volume (Rank #19416 of 50,000)
Average rating
4.7
Ratings count may be unavailable
Reviews
21
Written reviews (when available)
Publish cadence
Daily or near-daily
Active weekly
Episode count
248
Data updated
Feb 10, 2026
Social followers
37.6K

Public Snapshot

Back to top
Country
United States
Language
English
Language (ISO)
Release cadence
Daily or near-daily
Latest episode date
Tue Feb 03 2026

Audience & Outreach (Public)

Back to top
Audience range
8K–20K / month
Public band
Reply rate band
Under 2%
Public band
Response time band
3–6 days
Public band
Replies received
1–5
Public band

Public ranges are rounded for privacy. Unlock the full report for exact values.

Presence & Signals

Back to top
Social followers
37.6K
Contact available
Yes
Masked on public pages
Sponsors detected
Yes
Guest format
No

Social links

No public profiles listed.

Demo to Unlock Full Outreach Intelligence

We publicly share enough context for discovery. For actionable outreach data, unlock the private blocks below.

Audience & Growth
Demo to unlock
Monthly listeners49,360
Reply rate18.2%
Avg response4.1 days
See audience size and growth. Demo to unlock.
Contact preview
i***@hidden
Get verified host contact details. Demo to unlock.
Sponsor signals
Demo to unlock
Sponsor mentionsLikely
Ad-read historyAvailable
View sponsorship signals and ad read history. Demo to unlock.
Book a demo

How To Pitch The MapScaping Podcast - GIS, Geospatial, Remote Sensing, earth observation and digital geography

Back to top

Want to get booked on podcasts like this?

Become the guest your future customers already trust.

PodPitch helps you find shows, draft personalized pitches, and hit send faster. We share enough public context for discovery; for actionable outreach data, unlock the private blocks.

  • Identify shows that match your audience and offer.
  • Write pitches in your voice (nothing sends without you).
  • Move from “maybe later” to booked interviews faster.
  • Unlock deeper outreach intelligence with a quick demo.

This show is Rank #19416 by pitch volume, with 17 pitches sent by PodPitch users.

Book a demoBrowse more shows10 minutes. Friendly walkthrough. No pressure.
4.7 / 5
RatingsN/A
Written reviews21

We summarize public review counts here; full review text aggregation is not shown on PodPitch yet.

Frequently Asked Questions About The MapScaping Podcast - GIS, Geospatial, Remote Sensing, earth observation and digital geography

Back to top

What is The MapScaping Podcast - GIS, Geospatial, Remote Sensing, earth observation and digital geography about?

A podcast for geospatial people. Weekly episodes that focus on the tech, trends, tools, and stories from the geospatial world. Interviews with the people that are shaping the future of GIS, geospatial as well as practitioners working in the geo industry. This is a podcast for the GIS and geospatial community subscribe or visit https://mapscaping.com to learn more

How often does The MapScaping Podcast - GIS, Geospatial, Remote Sensing, earth observation and digital geography publish new episodes?

Daily or near-daily

How many listeners does The MapScaping Podcast - GIS, Geospatial, Remote Sensing, earth observation and digital geography get?

PodPitch shows a public audience band (like "8K–20K / month"). Book a demo to unlock exact audience estimates and how we calculate them.

How can I pitch The MapScaping Podcast - GIS, Geospatial, Remote Sensing, earth observation and digital geography?

Use PodPitch to access verified outreach details and pitch recommendations for The MapScaping Podcast - GIS, Geospatial, Remote Sensing, earth observation and digital geography. Start at https://podpitch.com/try/1.

Which podcasts are similar to The MapScaping Podcast - GIS, Geospatial, Remote Sensing, earth observation and digital geography?

This page includes internal links to similar podcasts. You can also browse the full directory at https://podpitch.com/podcasts.

How do I contact The MapScaping Podcast - GIS, Geospatial, Remote Sensing, earth observation and digital geography?

Public pages only show a masked contact preview. Book a demo to unlock verified email and outreach fields.

Quick favor for your future self: want podcast bookings without the extra mental load? PodPitch helps you find shows, draft personalized pitches, and hit send faster.